Syllabus
NB: this syllabus is subject to change
Description:
With the advent of digital computation, humans have found a variety of new tools for self expression and communication. However, most of the interfaces to these toolsets are created with a computer in mind, not taking into account humanistic needs of design and usability. Additionally, computers have traditionally lacked knowledge of the richness of the physical world. As such, their understanding of our needs has been informed by click and taps, seeing the world as a binary system of on or off.
This course explores creative computation through software and hardware. By approaching software and hardware design as artists and designers with an emphasis on human-based factors, we can explore new paradigms of interaction with machines and each other. Using open source software environments and open hardware platforms, we will look at way of making these tools work for us. No background in programming or electronics is expected. A sense of play, desire to experiment, and a DIY attitude is strongly encouraged.
Learning outcomes:
Students who successfully complete this course will be able to :
•Think critically about interaction design principles for hardware (physical) and software (screen based) interfaces
•Work with basic electronics, including analog and digital sensors and actuators •Understand and be able to implement basic principles of computer programming, including working with objects and classes
•Use a computer as a tool for self expression
•Bring information about the physical world (such as light, pressure, temperature) into the computer and process it in an interesting fashion
Teaching methodology:
This course is a production based class. You will be doing work in and outside of the class that is ideally experimental, participatory and collaborative. In lab courses we will review topics like programming techniques and circuit design, while non-lab class days will be given over to lecture and discussion based on readings, videos, audio, and interactive works found primarily online.
Grading:
•15% Attendance & participation
•30% Weekly assignments
•15% Stupid Pet Trick
•20% Journal entries
•20% Final project
Assignments:
Every class you will have an assignment. Some of the time it will contain readings, some of the time it will be practical. If the assignment calls for a reading, you should write up a short response, at least a paragraph, more if you're feeling inspired.
Each class is a combination of discussion, show-and-tell, and practice based work. The technical aspects of your homework will be covered in class, which you then use in an improvisational fashion, where you take the lesson and make something unique and interesting based on the in-class review. We will spend time in each class reviewing your work, and using this as an opportunity to review concepts that are unclear, or investigate solutions to common problems. Expect to be asked to show your work every time we meet. Some classes everyone may demonstrate their work, other classes only a few students may, but always be prepared.
All of your work must be documented.
Online Journal:
You are expected to keep an online journal. The purpose of the journal is twofold. First, it is a valuable way for you to communicate to me that you are keeping up with the work in the class. I read the site to see how you are doing. At a minimum, reference to your work is expected, as well as reference to the readings, and thorough documentation of any research. Secondly, the journal is a way to document your work for your own use and that of others.
You must update the journal weekly with the work you have done for class. It's generally easiest to do this as you do the work.
Document your projects thoroughly as you go; don’t put it off until the end. Photos, video, drawings, schematics, and notes are all valuable forms of documentation. Explain the project at the beginning of your documentation, so that people who come to your site from outside this class can understand your work quickly.
Don’t overload your notes with code. Code repositories like gitHub are best for sharing code, rather than blogs, so post your code to a repository and link to it from your blog. When you base your code on someone else’s code, cite the original author and link to their code, just as you would when quoting another author in a paper. If you only changed one part of an existing program, post only the part you changed, and link to the original. Make sure any code you post is well-commented, so you and others can understand what it does. Copying code or techniques without attribution is plagiarism. Few ideas come out of the blue, and your readers can learn a lot from the sources from which you learned and by which you were were inspired. So be generous in sharing your sources.
Good documentation should include a description and illustration of your project. You should include what it looks like, what it does, what the user or participant does in response. When it’s interactive, mention and show what the user does. Your explanation should give enough information that someone who’s never seen the project can understand it.
You should also include a section describing how the project works, aimed at a more informed reader (your instructor, or next year’s classmates). Include a system diagram to make clear what the major components of the system are and how they communicate.
Here are some examples of good weekly documentation.
You should use the journal as an opportunity to write clear, concise thoughts or questions based on the weekly topics. The writing is expected to be well reasoned, grammatically correct, and written as if it were a paper being turned in. You should link to any relevant sources, and provide as much context as you can using images, video, audio, or other forms of expression. I’ll set you all up with an account the first day of class.
Here’s some excellent final project documentation
Final Project :
Create a physically interactive system of your choice that relies on a multimedia computer for some sort of processing or data analysis.
Your focus should be on careful and timely sensing of the relevant actions of the person or people that you’re designing this for, and on clear, prompt, and effective response. Any interactive system is going to involve systems of listening, thinking, and speaking from both parties. Whether it involves one cycle or many, the exchange should be engaging.
You may work alone or in groups.
A few examples:
Musical Instruments. Performing music involves a sustained engagement between the performer and the instrument. The feedback from the instrument has to be immediate and clear in order for the performer to continue playing. The interface has to be flexible so that the musician can exercise her creativity in playing, but has to have some boundaries so that she knows what the instrument can do and what it can’t do.
Game interfaces. Like musical instruments, they involve constant back-and-forth interaction and immediate response. They are often simpler than musical instruments. In fact, the standard game controller has gotten so standard that the action of many games is artificially adapted to the needs of the controller, not the physical expressiveness of the player. Pick a specific game and see if you can change that.
Assistive devices. Whether it’s something as simple as a reaching device (think of pickle pickers) or something more complex, these devices are very demanding of clear, reliable response.
Remote control systems. They require not only a clear interface, but must also return enough information on the remote system’s action to let you know that you’re doing the right thing. Whether it’s a remote controller for your home electrical devices or a Mars rover controller, the need for clarity and good feedback are equally essential to the person who it’s made for.
There are many other good applications for this project. Discuss the specifics of yours with your me!
Participation and attendance:
Attendance is mandatory. Unexcused absences or habitual lateness will negatively impact your final grade for the class. If you’re going to be late or absent, please email me in advance. If you have an emergency, please let me know as soon as you can.
Please turn in all assignments on time.
Showing up on time, engaging in the class discussion, and offering advice and input in the class is a large part of your grade. Participating in class discussions is helpful for me to get to know you as an individual and keep track of your progress, but most importantly, it provides you and your classmates with the opportunity to share failures, successes, and insights on the work you are doing.
You are expected to show work in class. This includes working prototypes, failed assignments, things that don’t work the way you expect, and so forth. Don’t be afraid to volunteer to show what you did, or failed to do.
If you do not ask questions, I can only assume you understand the material completely. Asking questions about concepts you do not understand and showing work that did not function as expected is not a sign of failure, it is an opportunity to learn.
Laptops:
Laptop use is fine if you are using your laptop to present in class, or if we’re in the middle of an exercise that makes use of it. Whenever classmates are presenting or we’re in the midst of a class discussion, please keep your laptop closed. The quality of the class depends in large part on your attention and active participation, so please respect that and close your lid.
Mobile Phones:
Please put them on vibrate or turn them off before you come to class. If you have an emergency that requires you to answer your phone during class, please tell me ahead of time.
Required Tools
a basic Arduino kit will get you through most everything in the course. Here are some examples :
ARDX kit : https://www.adafruit.com/product/170
Adafruit starter kit pack : https://www.adafruit.com/product/68
Official Arduino starter kit : https://www.adafruit.com/product/1078
Sparkfun inventor's kit : https://www.sparkfun.com/products/13969 or https://www.sparkfun.com/products/13970
Sparkfun tinker kit : https://www.sparkfun.com/products/13930
You can also get things piecemeal with an Arduino and breadboard. You'll have to buy LEDs, switches, sensors, etc. seperately. If you are interested in this route, let me know.
Required Software
p5js http://p5js.org and a text editor of some sort. I use Brackets. Sublime Text and BBEdit are other popular choices.
Arduino http://arduino.cc
Recommended books
Recommended tools
Hardware : basic hand tools like pliers, screwdrivers, wire cutters, wire strippers.
Software : fritzing http://fritzing.org